Organization of functional synaptic connections between medullary reticulospinal neurons and lumbar descending commissural interneurons in the neonatal mouse.
نویسندگان
چکیده
The medullary reticular formation (MRF) of the neonatal mouse is organized so that the medial and lateral MRF activate hindlimb and trunk motoneurons (MNs) with differential predominance. The goal of the present study was to investigate whether this activation is polysynaptic and mediated by commissural interneurons with descending axons (dCINs) in the lumbar spinal cord. To this end, we tested the polysynapticity of inputs from the MRF to MNs and tested for the presence of selective inputs from medial and lateral MRF to 574 individual dCINs in the L2 segment of the neonatal mouse. Reticulospinal-mediated postsynaptic Ca(2+) responses in MNs were reduced in the presence of mephenesin and after a midline lesion, suggesting the involvement of dCINs in mediating the responses. Consistent with this, stimulation of reticulospinal neurons in the medial or lateral MRF activated 51% and 57% of ipsilateral dCINs examined (255 and 352 dCINs, respectively) and 52% and 46% of contralateral dCINs examined (166 and 133 dCINs, respectively). The proportion of dCINs that responded specifically to stimulation of medial or lateral MRF was similar to the proportions of dCINs that responded to both MRF regions or to neither. The three responsive dCIN populations had largely overlapping spatial distributions. We demonstrate the existence of dCIN subpopulations sufficient to mediate responses in lumbar motoneurons from reticulospinal pathways originating from the medial and lateral MRF. Differential control of trunk and hindlimb muscles by the medullary reticulospinal system may therefore be mediated in part by identifiable dCIN populations.
منابع مشابه
Corticospinal and Reticulospinal Contacts on Cervical Commissural and Long Descending Propriospinal Neurons in the Adult Rat Spinal Cord; Evidence for Powerful Reticulospinal Connections
Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and ...
متن کاملIpsilateral actions of feline corticospinal tract neurons on limb motoneurons.
Contralateral pyramidal tract (PT) neurons arising in the primary motor cortex are the major route through which volitional limb movements are controlled. However, the contralateral hemiparesis that follows PT neuron injury on one side may be counteracted by ipsilateral of actions of PT neurons from the undamaged side. To investigate the spinal relays through which PT neurons may influence ipsi...
متن کاملCoupling between feline cerebellum (fastigial neurons) and motoneurons innervating hindlimb muscles.
The aims of the study were twofold: (1) to verify the hypothesis that neurons in the fastigial nucleus excite and inhibit hindlimb alpha-motoneurons and (2) to determine both the supraspinal and spinal relays of these actions. Axons of fastigial neurons were stimulated at the level of their decussation in the cerebellum, within the hook bundle of Russell, in deeply anesthetized cats with only t...
متن کاملSame spinal interneurons mediate reflex actions of group Ib and group II afferents and crossed reticulospinal actions.
The aim of the study was to analyze interactions between neuronal networks mediating centrally initiated movements and reflex reactions evoked by peripheral afferents; specifically whether interneurons in pathways from group Ib afferents and from group II muscle afferents mediate actions of reticulospinal neurons on spinal motoneurons by contralaterally located commissural interneurons. To this...
متن کاملDifferential modulation by monoamine membrane receptor agonists of reticulospinal input to lamina VIII feline spinal commissural interneurons.
Noradrenaline and serotonin have previously been demonstrated to facilitate the transmission between descending reticulospinal tracts fibres and commissural interneurons coordinating left-right hindlimb muscle activity. The aim of the present study was to investigate the contribution of subclasses of monoaminergic membrane receptors to this facilitation. The neurons were located in Rexed lamina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 12 شماره
صفحات -
تاریخ انتشار 2011